Program Listing for File kondoTwoImpuritySC.hpp¶
↰ Return to documentation for file (models/kondoTwoImpuritySC.hpp
)
#pragma once
#include "models/fermionBasis.hpp"
#include "nrgcore/qOperator.hpp"
#include "nrgcore/qsymmetry.hpp"
#include "utils/qmatrix.hpp"
#include <algorithm>
#include <cmath>
#include <complex>
#include <cstddef>
#include <iostream>
#include <map>
#include <optional>
#include <string>
#include <vector>
class kondoTwoImpuritySC : public fermionBasis {
public:
// ########################################
explicit kondoTwoImpuritySC(const std::map<std::string, double> ¶ms) {
double JKondo1 = params.at("Jkondo1");
double JKondo2 = params.at("Jkondo2");
double Jrkky = params.at("J_RKKY");
double spinS = params.at("spinS");
double localDelta = params.at("Delta_sc");
auto spinDim = static_cast<size_t>(2. * spinS + 1.);
// TODO: check spinS is multiple of 2.
if (std::fabs(spinDim - (2. * spinS + 1.)) > 0
//
// or zero
|| abs(spinS) == 0) {
throw std::invalid_argument(
"spinS must be a half integer or integer. spinS:" +
std::to_string(spinS));
}
std::cout << "spinDim: " << spinDim << std::endl;
qmatrix<double> spinXz(spinDim, spinDim, 0);
qmatrix<double> spinXplus(spinDim, spinDim, 0);
// Spin Z
for (size_t i = 0; i < spinDim; i++) {
double m = -spinS + i * 1.0;
spinXz(i, i) = m;
if (i != (spinDim - 1)) {
std::cout << "spinDim: " << i << " " << spinDim << std::endl;
spinXplus(i, i + 1) = std::sqrt(spinS * (spinS + 1.) - m * (m + 1));
}
}
// std::cout << "spinSz: \n" << spinSz << std::endl;
// std::cout << "spinSplus: \n" << spinSplus << std::endl;
auto spinXminus = spinXplus.cTranspose();
auto spinXx = (spinXplus + spinXminus) * 0.5;
auto spinXy = (spinXplus - spinXminus) * 0.5; // -i is omitted here.
auto spinXId = spinXz.id();
// ###########################################
auto spin1Sz = spinXz.krDot(spinXId);
auto spin1Sx = spinXx.krDot(spinXId);
auto spin1Sy = spinXy.krDot(spinXId);
// second spin
auto spin2Sz = spinXId.krDot(spinXz);
auto spin2Sx = spinXId.krDot(spinXx);
auto spin2Sy = spinXId.krDot(spinXy);
// ########################################
// std::cout << "spinSx: " << spinSx << std::endl;
// std::cout << "spinSy: " << spinSy << std::endl;
// std::cout << "spinSz: " << spinSz << std::endl;
// ########################################
// create basis
qmatrix<> fdag = {0, 0, 1, 0};
qmatrix<> sigz = {1, 0, 0, -1};
qmatrix<> id2 = {1, 0, 0, 1};
// Create c_up and c_Down operator
// Addting and additional operators should be done in the same way.
auto c_up_dag = fdag.krDot(id2);
auto c_Down_dag = sigz.krDot(fdag);
// Create Wilson Site spin operators
auto wSpinx = (c_up_dag.dot(c_Down_dag.cTranspose()) +
c_Down_dag.dot(c_up_dag.cTranspose())) *
0.5;
auto wSpiny = (c_Down_dag.dot(c_up_dag.cTranspose()) -
c_up_dag.dot(c_Down_dag.cTranspose())) *
0.5; // -i is omitted here.
auto wSpinz = (c_up_dag.dot(c_up_dag.cTranspose()) -
c_Down_dag.dot(c_Down_dag.cTranspose())) *
0.5;
auto wNtotal =
(c_up_dag.dot(c_up_dag.cTranspose()) +
c_Down_dag.dot(
c_Down_dag.cTranspose())); // Create Hamiltonian spin operator
// ########################################################
// std::cout << "wSpinx: " << wSpinx << std::endl;
// std::cout << "wSpiny: " << wSpiny << std::endl;
// std::cout << "wSpinz: " << wSpinz << std::endl;
// ############################################
auto Hamiltonian =
// first spin coupling
((spin1Sz.krDot(wSpinz) + spin1Sx.krDot(wSpinx) -
spin1Sy.krDot(wSpiny)) *
JKondo1) +
// second spin coupling
((spin2Sz.krDot(wSpinz) + spin2Sx.krDot(wSpinx) //
- spin2Sy.krDot(wSpiny)) * // Imaginary part is taken care here
JKondo2)
// rkky interaction between the two impurities
+ (spin1Sz.dot(spin2Sz) + spin1Sx.dot(spin2Sx) - spin1Sy.dot(spin2Sy))
.krDot(wSpinz.id()) *
Jrkky
// SC term
+ spin1Sz.id().krDot(
(c_up_dag.dot(c_Down_dag) +
c_Down_dag.cTranspose().dot(c_Down_dag.cTranspose()))) *
localDelta //
;
// End
// std::cout << "spinSz: " << spinSz << std::endl;
auto qspin1Sz = spin1Sz.krDot(wSpinx.id());
auto qspin2Sz = spin2Sz.krDot(wSpinx.id());
// std::cout << "spinSz: " << spinSz << std::endl;
auto qwSpinz = spin1Sx.id().krDot(wSpinz);
auto qwNtotal = spin1Sx.id().krDot(wNtotal);
// std::cout << "wSpinz: " << wSpinz * 2 << std::endl;
c_up_dag = spin1Sx.id().krDot(c_up_dag);
c_Down_dag = spin1Sx.id().krDot(c_Down_dag);
fnParticle.clear();
// Number of particles
fnParticle.push_back(((qspin1Sz.id() + qspin1Sz * 2.) * 0.5).getdiagonal());
fnParticle.push_back(((qspin1Sz.id() - qspin1Sz * 2.) * 0.5).getdiagonal());
//
fnParticle.push_back(((qspin1Sz.id() + qspin2Sz * 2.) * 0.5).getdiagonal());
fnParticle.push_back(((qspin1Sz.id() - qspin2Sz * 2.) * 0.5).getdiagonal());
//
fnParticle.push_back(((qwNtotal + qwSpinz * 2.) * 0.5).getdiagonal());
fnParticle.push_back(((qwNtotal - qwSpinz * 2.) * 0.5).getdiagonal());
//
//
std::cout << "fnParticle: " << fnParticle << std::endl;
// set the symmetries of the system
// create_QuantumNspinCharge();
// spin is only quantum number that is conserved
std::vector<size_t> tm1;
std::vector<size_t> tm2;
for (size_t j = 0; j < fnParticle.size(); j++) {
if (j % 2 == 0) { // Spin up
tm1.push_back(j);
} else { // Spin down
tm2.push_back(j);
}
}
std::vector<std::vector<size_t>> spinIdx = {tm1, tm2};
create_QuantumSpinOnly(spinIdx);
// create the quantum numbers
// create the quantum numbers
create_Block_structure();
// ####################################################################
n_Q = get_unique_Qnumbers();
// set chi_Q
chi_Q.clear();
for (auto ai : n_Q) {
double t_charge = std::accumulate(ai.begin(), ai.end(), 0);
chi_Q.push_back(std::pow(-1., t_charge));
}
//
// set foperator
auto h_blocked = get_block_Hamiltonian(Hamiltonian);
// std::cout << "h_blocked: " << h_blocked << std::endl;
// std::cout << "Hamiltonian: " << Hamiltonian << std::endl;
// Diagonalize the hamilton
eigenvalues_Q.clear();
eigenvalues_Q.resize(n_Q.size(), {});
for (size_t i = 0; i < n_Q.size(); i++) {
eigenvalues_Q[i] = (h_blocked.get(i, i)).value()->diag();
}
// TODO: rotate the f operator
// ####################################################################
f_dag_operator = get_block_operators({c_up_dag, c_Down_dag});
std::cout << "f_dag_operators: " << f_dag_operator.size() << std::endl;
std::vector<qOperator> topr(f_dag_operator.size(), qOperator());
for (size_t ip = 0; ip < f_dag_operator.size(); ip++) {
for (size_t i = 0; i < n_Q.size(); i++) {
for (size_t j = 0; j < n_Q.size(); j++) {
auto tfopr = f_dag_operator[ip].get(i, j);
if (tfopr) {
topr[ip].set((h_blocked.get(i, i))
.value()
->cTranspose()
.dot(*tfopr.value())
.dot(*(h_blocked.get(j, j)).value()),
i, j);
}
}
}
}
f_dag_operator = topr;
}
// ######################################
[[nodiscard]] std::vector<std::vector<int>> get_basis() const { return n_Q; }
[[nodiscard]] std::vector<std::vector<double>> get_eigenvaluesQ() const {
return eigenvalues_Q;
}
[[nodiscard]] std::vector<double> get_chi_Q() const { return chi_Q; }
//
std::vector<std::vector<double>> eigenvalues_Q;
std::vector<double> chi_Q;
std::vector<std::vector<int>> n_Q;
};