:github_url: https://github.com/srbhp/nrgplusplus .. _program_listing_file_models_spinhalfSC.hpp: Program Listing for File spinhalfSC.hpp ======================================= |exhale_lsh| :ref:`Return to documentation for file ` (``models/spinhalfSC.hpp``) .. |exhale_lsh| unicode:: U+021B0 .. UPWARDS ARROW WITH TIP LEFTWARDS .. code-block:: cpp #pragma once #include "models/fermionBasis.hpp" #include "nrgcore/qOperator.hpp" #include "nrgcore/qsymmetry.hpp" #include "utils/qmatrix.hpp" #include #include #include #include #include #include #include #include #include #include class spinhalfSC { std::vector> f_dag_raw; fermionBasis localSCbabsis; public: spinhalfSC(double teps, double tUint, double tmag) // NOLINT : localSCbabsis(2, fermionBasis::spinOnly) { double Uint = tUint; double epsilon_d = teps; double magnetic_field = tmag; // // create_basis(); // set_foperator(); // set_chi_Q(); // create_hamiltonian(); // localSCbabsis = fermionBasis(2, fermionBasis::spinOnly); // Number of fermion channels/spins f_dag_operator = localSCbabsis.get_f_dag_operator(); f_dag_raw = localSCbabsis.get_raw_f_dag_operator(); // n_Q n_Q = localSCbabsis.get_unique_Qnumbers(); // set chi_Q chi_Q.clear(); for (auto ai : n_Q) { double t_charge = std::accumulate(ai.begin(), ai.end(), 0); chi_Q.push_back(std::pow(-1., t_charge)); } // std::cout << "chi_Q: " << chi_Q << std::endl; // set up the Hamiltonian auto n_up = f_dag_raw[0].dot(f_dag_raw[0].cTranspose()); auto n_down = f_dag_raw[1].dot(f_dag_raw[1].cTranspose()); // std::cout << "n_up" << n_up << "n_down" << n_down; auto H = (n_up + n_down) * epsilon_d // onsite energy + (n_up - n_down) * magnetic_field // Magnetic Field + (n_up.dot(n_down)) * Uint; // Columb Energy // get the hamiltonian in the blocked structure auto h_blocked = localSCbabsis.get_block_Hamiltonian(H); // h_blocked.display(); // Diagonalize the hamilton eigenvalues_Q.clear(); eigenvalues_Q.resize(n_Q.size(), {}); for (size_t i = 0; i < n_Q.size(); i++) { eigenvalues_Q[i] = (h_blocked.get(i, i)).value()->diag(); } // TODO(sp): rotate the f operator // #################################################################### f_dag_operator = localSCbabsis.get_block_operators({f_dag_raw[0], f_dag_raw[1]}); std::cout << "f_dag_operators: " << f_dag_operator.size() << std::endl; std::vector topr(f_dag_operator.size(), qOperator()); for (size_t ip = 0; ip < f_dag_operator.size(); ip++) { for (size_t i = 0; i < n_Q.size(); i++) { for (size_t j = 0; j < n_Q.size(); j++) { auto tfopr = f_dag_operator[ip].get(i, j); if (tfopr) { topr[ip].set((h_blocked.get(i, i)) .value() ->cTranspose() .dot(*tfopr.value()) .dot(*(h_blocked.get(j, j)).value()), i, j); } } } } f_dag_operator = topr; // End of the constructor } // void addSCDelta(double delta) { auto H = (f_dag_raw[0].cTranspose().dot(f_dag_raw[1].cTranspose()) + f_dag_raw[1].dot(f_dag_raw[0])) * delta; auto h_blocked = localSCbabsis.get_block_Hamiltonian(H); // h_blocked.display(); // Diagonalize the hamilton eigenvalues_Q.clear(); eigenvalues_Q.resize(n_Q.size(), {}); for (size_t i = 0; i < n_Q.size(); i++) { eigenvalues_Q[i] = (h_blocked.get(i, i)).value()->diag(); } // TODO(sp): rotate the f operator // #################################################################### f_dag_operator = localSCbabsis.get_block_operators({f_dag_raw[0], f_dag_raw[1]}); std::cout << "f_dag_operators: " << f_dag_operator.size() << std::endl; std::vector topr(f_dag_operator.size(), qOperator()); for (size_t ip = 0; ip < f_dag_operator.size(); ip++) { for (size_t i = 0; i < n_Q.size(); i++) { for (size_t j = 0; j < n_Q.size(); j++) { auto tfopr = f_dag_operator[ip].get(i, j); if (tfopr) { topr[ip].set((h_blocked.get(i, i)) .value() ->cTranspose() .dot(*tfopr.value()) .dot(*(h_blocked.get(j, j)).value()), i, j); } } } } f_dag_operator = topr; } [[nodiscard]] std::vector> get_basis() const { return n_Q; } [[nodiscard]] std::vector> get_eigenvaluesQ() const { return eigenvalues_Q; } [[nodiscard]] std::vector get_chi_Q() const { return chi_Q; } // protected: // functions void set_chi_Q(); // std::vector f_dag_operator; std::vector> eigenvalues_Q; std::vector chi_Q; std::vector> n_Q; };